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For the SOS model defined by the Hamiltonian H(~b)=�89 > 1~,-,6,,I + 
h~x~b.~, where ~b x, #x,e{1,2,...}, h>0, x e Z  d, d>~2, it is shown that in the 
low-temperature region an infinite sequence of first-order phase transitions takes 
place when h ~ 0 and the temperature is fixed. 

KEY WORDS: SOS model; layering transition; entropic repulsion; cluster 
expansion; dominant ground states. 

1. INTRODUCTION 

The sol id-on-sol id  (SOS)  model  is the simplest  model  of r andom surfaces 
and a large number  of different effects can be studied in its framework.  
Reference 1 may serve as a general  review of surface statist ical  physics and 
ref. 3 contains  a detai led invest igat ion of various SOS models.  

In the most  visualizable case d =  2 our  discrete two-dimensional  sur- 
face lives in the upper  half-space of R a. Due  to thermal  f luctuations this 
surface is repelled from the lower half-space as from a rigid wall, while an 
external  magnet ic  field acts as an at t ract ive potential .  We prove that  the 
compet i t ion  between the ent ropic  repulsion and the at t ract ive potent ia l  
results in the following behavior  of the model.  F o r  sufficiently large inverse 
tempera ture  fl and for the magnet ic  field h of order  ( l / f l ) e  -4Bk  the surface 
is localized at the level k. When  the value of  h decreases from (1/ f l )e  -4pk 
to (1/f l )e  -4BIk+ 11 then at some point  h~ = two phases become stable in the 
the rmodynamic  limit. They are localized at levels k and k + l,  respectively. 
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Up to the first-order terms of the perturbation theory the value h* was 
calculated in ref. 3, which also contains a transparent qualitative explana- 
tion of the layering transition phenomenon as well as a deep analysis of 
related questions. 

The investigation of the layering transition in the semi-infinite Ising 
model seems to be the most natural generalization of our study and it will 
be the subject of a forthcoming paper. In fact, this result was announced 
in ref. 2 and then it was partially proven in ref. 7, but the full proof still is 
absent in the literature. 

In a recent paper tS) the localization of the surface was established for 
the Gaussian SOS model but in different settings. 

The SOS model with two-sided constraints was studied in ref. ll-, the 
methods of which are close to our scheme, but the proof here is more direct 
and simple. 

The next section contains an exact formulation of the result as well as 
its proof. Our approach is based on the cluster expansion technique, (8 ~o.~3) 
on the Pirogov-Sinai theory, tl2'J4'~5) and on the dominant ground-states 
theory, t4'6) In contrast with refs. 4, 6 and l l, we do not use so-called 
contour models with interaction. In the proof we concentrate mainly on 
the detailed construction of the cluster expansion for the logarithm of the 
partition function for the simplest case d =  2 and h r [h E - e, h* + e]. This 
obviously proves the existence of the limit Gibbs measure for given values 
of parameters. After the cluster expansion is constructed the proof of the 
uniqueness of the corresponding Gibbs measure as well as the investigation 
of the vicinity of hE become a standard application of the Pirogov-Sinai 
theory. So we give only a sketch of the corresponding proofs .  The 
generalization on the case d ~  3 seems to be straightforward and is omitted. 

2. M O D E L ,  RESULTS,  A N D  PROOF 

The model under consideration is defined by the Hamiltonian 

H(~)=�89 ~ I ~ x - ~ x , l + h ~ . ~  (2.1) 
(x.x,)  x 

where ~b.~, ~b x. ~ Z + = { 1, 2,... } are the spin yariables at sites x, x' ~ zd; h > 0 
is the external magnetic field; the first sum is taken over all nearest- 
neighbor pairs (x,  x ' ) ~ Z a ;  and the second one extends over all sites 
x ~ Z  d. 

For the sake of simplicity we fix d =  2. The case d >  2 can be treated 
in an analogous way. For any finite volume V c  Z 2 and for any fixed 
configuration O'v~ on its complement V" = Z2\ V let 
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n(~vI,k'~)=�89 Z IoSx-~x.I 
< x , x ' >  e V 

+�89 E 
< x , x ' ) : . r e  V , x '  ~ V r 

be a conditional Hamiltonian and let 

Iffx- ff.'~.l + h Z ~-~ (2.2) 
.x'E V 

•(VI ~b~) = ~  exp{ -flH((~v I ~b'vc) } (2.3) 
~ v  

be the corresponding partition function in the volume V with the boundary 
condition ~b~. Here and below fl is the inverse temperature and the nota- 
tion ~ v is used for the configuration in the volume V, i.e., for the function 
q~v: V ~--~Z+. Denote by ~b tk~ the configuration with ~b!~=k for all x e Z  2. 
Our result is given by the following theorem. 

T h e o r e m  2.1. There exist a constant flo and a sequence of con- 
tinuous functions h*([3), k =  1,2 .... [h*( f l )~0  as k--. oo and fl is fixed], 
such that for any/3 t> flo the following hold true: 

(i) If h*(fl) < h < h*_ 1([3) [ h * ( f l ) -  +oo ], then the model possesses 
a unique Z2-periodic Gibbs state generated by the boundary condition ~b tk). 

(ii) If h=h*(fl),  then the set of Z2-periodic extremal Gibbs states 
contains precisely two elements generated by the boundary conditions ~b ~kl 
and ~b ~*+ l~ 

Proof. Every configuration ~b of the SOS model can be naturally 
considered as a surface imbedded into R 3. To get this surface we draw 
the horizontal (i.e., parallel to Z z) unit plaquettes centered at the points 
(x, ~bx)~ ZZx Z + and for every pair of nearest neighbors <x, x'> ~Z  2 we 
draw the sequence of I~bx- ~bl,..I stacked vertical (orthogonal to Z 2) plaquet- 
tes centered at the points (y, a), (y, a +  1) ..... (y, b), where y = ( x + x ' ) / 2 ,  
a = min(~bx, 0~x,) + �89 b = max(~b.~, ~bx,) - �89 Geometrically the surface ~b 
consists of horizontal "ceilings" and vertical "walls." 

Let a horizontal section of the surface ~b be a subset of the vertical pla- 
quettes of r centered at the same horizontal plane. Every horizontal section 
of the surface ~b can be uniquely decomposed onto connected components. 
A union of the components having the same projection on the underlying 
dual lattice Zz = Z 2 + (�89 �89 we call a cylinder and we treat the surface ~ as 
the collection of the cylinders. 

Formally we define a cylinder as a triple ? =  (~7, E, I), where ?(7) is 
called the base of the cylinder, E(y) is called the external or starting level 
of the cylinder, and I(?) is called the internal or ending level of the cylinder. 
The base ~7 is defined as a connected set of bonds of ~2 such that only an 
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even number of bonds passes through every point y e 22; E(),) and I(y) are 
distinct positive integers. The value S(y)=sign(l(y)-E(7)) is called the 
sign of the cylinder and L(y)= I I (y) -  E(y)I is called the length of the cylin- 
der. The interior of the cylinder )7(),)=~(~(~)) is the set of points x E Z  2 
enclosed by ~(y). The configuration ~(y) such that ~(y)x=E(y), if x ~ "  
and ~(y)x=l(y),  if x e ~  naturally corresponds to the cylinder y and the 
geometry of the surface r justifies our notations and our terminology. 
Obviously "~ is the projection on Z 2 of the vertical wall of ~, E(y) is the 
level of the ceiling which is adjacent to the vertical wall of y from the 
exterior, and I(y) is the level of the ceiling which is adjacent to the vertical 
wall of y from the interior. To establishing the one-to-one correspondence 
between the set of configurations and the set of collections of cylinders we 
introduce the compatibility condition for cylinders. 

The cylinders y '=(~) ' ,E ' , I ' )  and y"=(y,",E",I") are weakly com- 
patible if the following conditions are fulfilled: 

(i) s(y)=s(y"), , 2 ' n ~ " = ~  and y n y ' = ~ ;  or S(r ' )=S(y") and 
~ ' c  ~"; or S(y ' )= S(y") and ~"~ ~'. (Here and further the sign c denotes 
strict inclusion, in contrast with the sign ___ of weak inclusion.) 

(ii) S(y')= -S(~,") and ~ ' n y " = ~ ;  or S(y')= -S(y"), ~ ' ~ " ,  and 
~)'n~)"= ~ ;  or S(~,')= -S(y") ,  ~"~ y', and ~'n~)" = ~ .  

The conditions (i)-(ii) differ slightly from the standard hard-cone con- 
dition ~' n ~7" = ~ because we mean that ~)' and ~)" may have some number 
of common bonds, if it is not mentioned that ~)' n ~" = ~ .  The cylinders y' 
and y" are compatible if, in addition, the following phase matching 
condition are fulfilled: 

(iii) E() , ' )=E(y") i f  ~ ' n ~ " = ~ ;  E(y')=I(y")if ~ 'c~" ;  I(),')=E(y") 
if ~ " ~ ' .  

We say that cylinders ),' and y" are separated by the cylinder y if ~ ' c  
~ c ~ ' ,  or ~" c ~ ' ,  or ~ 'c-~ ~" c~", or ~" c)7, ~7' ~ ~". A collection {?i} is 
called a compatible collection of cylinders if any two its cylinders not 
separated by the third one are compatible. 

To construct the configuration q~({yi}) uniquely corresponding to the 
finite compatible collection of cylinders we introduce a partial order for 
cylinders according to the partial order by' inclusion for their interiors. 
Maximal cylinders we call external cylinders. For any finite compatible 
collection of cylinders {Yi} all external cylinders in this collection have the 
same external level E({yi}). Let y(x) denote the minimal cylinder from {y~} 
such that f,(x)~x. We put (~x({y~})=I(y(x))if ~,(x):/:~ and q~x({~i})= 
E({y;}) if y(x)= O (i.e. y(x) does not exist). 
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To any cylinder y = (~, E, I) we assign the statistical weight 

w(?) =exp{- /~L(?)  I~l-/~hS(y) L(y)Ifl} (2.4) 

where I~?1 denotes the number of bonds in ~, and I~1 denotes the number 
of sites in ~7. For the configuration @ such that I{xs Zz: ~b.~ #k}l  < oo we 
obviously have 

exp{-/~H(~)} =exp{-/~H(~(*)) } I-I w(?,(~)) (2.5) 
i 

This shows the equivalence of the geometric language of cylinders with the 
original language of configurations. Both of them are used freely in the 
sequel. 

The proof of Theorem 2.1 is based on the cluster expansion technique. 
As a first step the appropriate cluster representation for the partition 
function (2.3) is obtained below after a number of transformations. Some 
notations are needed. We write {?~} ~ V (k) if E(7~xt)=k and -extc ?; _ V  for 
every external cylinder yTx, in the collection {?,.}. We write {?~} e V (k'-+) if 
for ? = (0V, k T- 1, k) the extended collection {?, ?;} remains compatible. 
Here aVe Z2 denotes the boundary of V and the volume V supposed to be 
simply connected. With the help of the notations just introduced we 
rewrite E(VI @~ )) as 

Z( V (k)) = e -ahk I vl ~ I1 W(?/) (2.6) 
{?j} E V (kl i 

and we also define slightly different partition functions 

3(V(k,+))=e-Ohk Iv1 ~ H w(?i) (2.7) 
{yi} ~ V {k.• i 

The role of the last two partition functions becomes clear because of the 
following lemma. 

L e m m a  2.1. For any finite simply connected volume V and any 
k ~ Z  + 

.E( V (k'')) = exp{ -~hk I VI} 

x ~ I-I w(y,-) exp{flhI(?~) 1~7,[ } Z(~I t(~')'s(~''))) (2.8) 
{yi}extE V(k,') i 

where V (k'') denotes any of V (k~, V (k'+~ and V (k'-I and {?~}e~t consists of 
mutually external cylinders only. 

Proof. The proof is standard. "4~ I 

Another expression for -=(V (k'~) can be obtained by means of a 
so-called "phase exchanging trick ''"~ which is described below. We 
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denote by [~,;] a weakly compatible collection o f  cylinders, i.e., a collection 
for which any two contours not separated by a third one are weakly 
compatible. We write [~,i]e V ~1 if E(~,,-)=k, '7~---V for all cylinders of 
[~].  Analogously [~,~] e V ~k'• means that E(vA=k for all cylinders of 
IV;] and the extended collection ~y, ~,g] with y = (OV, k-T- 1, k)  is still 
weakly compatible. 

Let the renormalized statistical weight of y = (7, E, I) L e m m a  2.2.  
be equal to 

_=(Tl',sl) 
�9 (~,) =exp{ - i l L  I~1} z(7~E,s~) (2.9) 

where S--S(),), L =  L(),). Then for any simply connected volume V and 
any k e Z  + 

~(V~k"l)  =e-~hklvi  ~ I-I r (2.10) 
[) , i]  is P Ik. ' l  i 

Proof. For a unit volume Lemma 2.2 is obvious. Now we proceed by 
the induction on V. Suppose that Lemma 2.2 is verified for all V' c V. Then 
Lemma 2.1 gives us 

Z( V ~k'' )) =exp{ - flhk I Vl} 

x ~ I-I w(y,) exp{flhl(yi)17,1} -=(71 "'''sr 
{y/}extis plk, ' l  i 

= e x p  { - flhk I Vl } 

• ~ rj. [w(~,,) exp(/Th/(y') If'l ) .-,=(~I'.',x s.'.,)] 
{),i}�9 vlk,'l ~ I'-~#l f ~ J 

x rexp{/Thk 17;I} 

The expression inside the first brackets is equal to ~()'i) and the expression 
inside the second brackets is equal to 

E I-I 
[~7] is ~Ik.sl;'m j 

due to the induction assumption. Therefore 

~ ( V ' t " ' i ) = e - t S h k i v i ~  I~fl [ i ~ ( ) ' ~ ) ~  r I  i,v(.),j)] 
{ y/}ext is vlk . . I  ' [ )'#.1" iS )'i-lk. Sl"iii, j 

= e - flhk I VI 

[ '~i] e V Ik,' l  i 

Both representations (2.6)-(2.7) and (2.10) for the partition functions 
3 ( V  Ik''~) have their pro and contra. The first one uses more controllable 
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statistical weights w(.) but requires a more complicated (and, in fact, non- 
local) compatibility condition. On the contrary, the second representation 
uses a weak compatibility condition of hard-core type but the renormalized 
statistical weights are less controllable. Our strategy is to find an optimal 
balance between (2.6)-(2.7) and (2.10). For this purpose we introduce the 
concept of an elementary cylinder. Generally speaking, we divide the class 
of all cylinders into two subclasses. The cylinders from the first subclass we 
call elementary cylinders and use special notations e = (g, E, I), g(e), L(e), 
S(e) for them. The cylinders from the second subclass we call nonelemen- 
tary cylinders and keep the notations ~, = (~, E, I), L(),), S(~) for them only. 
The word "nonelementary" is usually omitted if it cannot lead to any 
misunderstanding. The notation {~i; ej} is used for the compatible collection 
of cylinders and elementary cylinders; the notation I-~'i; ej] is used for the 
weakly compatible collection of cylinders and elementary cylinders. The 
mixed notation {~,;;ej] is introduced for the collection of cylinders and 
elementary cylinders with the following compatibility properties: 

(i) All of the collection is weakly compatible. 

(ii) For any pair of nonelementary cylinders ~i, and 7;,, not 
separated by a third nonelementary cylinder, E r =  Er. if ~,-,n~r,= ~ ,  
El" = [i" if ~7;, ~ )7 i,., and L, = El,, if %,, c 7i'. 

(iii) For any pair of elementary cylinders ej, and ej,, not separated by 
a nonelementary cylinder Ej, = Ej,.. 

(iv) For any pair of elementary cylinder ej and nonelementary 
cylinder 7; not separated by another nonelementary cylinder Ej=E; if 
e j n  T i= ~ ,  E j =  I i if g j c  ~;, and Ej= E; (not Ej= I;!) if ~;c ej. 

To explain the notation { . ; - ]  we note that the nonelementary part of 
this collection is compatible, the elementary one is weakly compatible, and 
some mixed compatibility condition is fulfilled between its elementary and 
nonelementary parts. For every collection {7;;e j] we put in corre- 
spondence the configuration ~b({7;; ~j]) such that ~bx({7;; ej])=I(7(x)) if 
7(x) is a nonelementary cylinder, ~bx( {7;; ej]) = E(7(x)) if 7(x) is an elemen- 
tary cylinder, and (bx({7;;ej])=E({7;; ej]) i f  7(x)= O. Let us stress that 
~b({7;; ej]):/:~b({Ti; ej}} because we mean that according to the "phase 
exchanging trick" the elementary cylinder ej does not change the configura- 
tion from E(ej) to I(ej). This leads us to the following representation for the 
3,(V~k"~). 

k e m m a  2.3. For any finite simply connected volume V and any 
k ~ Z  + 

Z(VCk"') = e-ahklvl ~ l-[ w(7,) 1-I v~(~j) (2.11) 
{~,~:~]~ VIk..) i j 
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Proof. For unit V, Lemma 2.3 is obvious. Suppose that it is proven 
for all V '= V. Then by Lemma 2.1 

~( V (k''l) = exp{ -flhk I Vl} 

x ~ {yli w(?i)exp{flhI(?i),fel }*"~(~II()")'S(?"))} 
{~,i;~j}**~ E v(k.') 

= exp { - flhk I VI } 

x ~ {~w(?,)exp{~hl(?e)lP, l}3,(f~'(','.s(','))} 

X { jIjl. I ~ ( e j ) e x p { f l h E ( e j ) ] g y ] }  ~.~(~,E(~j).s(ej)))} 

Applying the induction hypothesis to the expressions in braces, we obtain 

~ ( V ( k " l ) = e - t ~ h k l v l ~  {l-~I. W(?i) 
{ ~,i;cs }r ~ V(k." I 

X [{Tra;~n]E~l;.i,.S{ril)~Im W('m) 

( ~p :to] ~ ~Ef~P.s(5" p q 

=e-tJhk;Vl E 1-I W(~',) I-I W(t.) I 
{Tt ;~u ]~  v(k"~ t u 

Besides the partition function ~(V(k"~), we also use the partition 
function 

Z(V(k"') = ~ 1-I ~,(ej) (2.12) 
[~/l ~ v {k,'l j 

It is the sum over weakly compatible collections of elementary cylinders 
peculiar to the phase ~b (kl only. So we refer to Z(V (k''~) as the partition 
function over the gas of the elementary cylinders of the surface ~b ~k~ (restricted 
ensemble in the terminology of ref. 4). 

Our last transformation of-~(V ~k''J) consist of some grouping of ?i. 
For this purpose we fix some k ~ Z  § and we define a contour F =  
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{T ext, )Ji, T int'j } as the compatible collection of nonelementary cylinders with 
the following properties: 

(i) ~eXt(F) contains the interiors of all other cylinders of F and 
E(TeXt(F)) = k, while E(yj) 4: k, E(T int'j) :~ k for all i, j. 

(ii) For every j the interior ~i.t.j of the cylinder ~,i.t.j does not contain 
the interior of any other cylinder of F and I(T i"t'j) = k, while/(T ext) :~ k as 
well as I(Ti) :~ k for all i. 

In other words the cylinder TeXt(F) is maximally external and the 
cylinders )fint'J(F) are maximally internal in the collection F. The volume 
Supp(F) = ~TcXt(F)\(Uj ~Ti"t'J(F)) is called the support of F. To every cylinder 
])i there corresponds a set 

Suppi(F) = N (~7,\37) 

and analogously we define a set 

Supp~(F) = 0 (~ex,\;;) 

which corresponds to ),ext. These sets are called the components of the 
support of F because they are mutually disjoint and their union coincides 
with Supp(F). It is important that the surface ~(F) uniquely defined by F 
is constant on every Supp;(F), i.e., if(F) can be described as 

ekx(F)=I(Ti) if x e Supp~(F) 

~bx(F)=I(T ex') if xeSupp~(F) 

~x(F)=E(T ex') if xr 

This shows that F is the object peculiar to the phase ~b Ik~ and we put 
E(F)=E(TeXt)=I(Ti"t'J)=k. An arbitrary collection {~,,,;en]eV (~''1 
uniquely defines the configuration ~( {T,,; e,]). If we consider the connected 
components of the set {x~Z2:q~x({V,,;e,]):~k}, then it can be easily 
checked that every such component is the support of some contour F. This 
property justifies the definition of F. 

Two contours are called compatible if their supports are nonintersect- 
ing. The collection of contours {F/} is called a compatible collection of 
contours if any two contours in it are compatible. In terms of compatible 
collections of contours the partition function 3(V (~'')) can be represented 
as 
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S(vlk"') =e-ph~lvt ~ H w(?,) l-] ~(~;) 
i),,;~s] e Vlk.'~ i j 

(( t<v =e-nhklVi~ Z V Supp(F,))) ) 
It1} ~ v lk . . I  

x [w(ye~t(F/)) Z(Supp,,(Fi)"~'~ 

where the notation V I ...... ) is used for the not simply connected volume with 
the boundary condition ~lm~ specified on V c and with some not mentioned 
but clear from the context sign (+  or - )  specified on the connected 
components of 0V. Define the statistical weight of the contour F =  
{~ext, ~'i' ~)int,.j} as  

w( F) = Z-  l(Supp( F)cE~rl'~) 

• IH  w(?i"i'J)] [w(?ext) Z(Supp~,(F)l#l)'~ 

Our final expression for S( V ~k'" I) is the following. 

L e m m a  2.4. For any finite simply connected volume V and fixed 
k ~ Z  + 

((/(v I F I I  E. v Ik . ' I  

x [I w(Ft) Z(Supp(Ft) ~k'l) (2.15) 
I 

Proof. If we substitute (2.14) into (2.13), then we obtain (2.15). | 

Expression (2.15) is a typical cluster representation of the partition 
function 3(V~"l ) .  ~*~ Indeed, our clusters are objects of twofold origin: 
contours and elementary cylinders. Both of them are labeled by the phase 
~b~l: the external levels of elementary cylinders and the external levels of 
contours are equal to k. Clusters interact only by means of the hard-core 
compatibility condition: supports of contours are mutually disjoint, bases 
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of elementary cylinders are mutually disjoint and do not intersect with 
the boundaries of the supports of contours. [Clearly, t3Supp(F)= 
Uj~int.iw ~ex~.] To be precise we should mention that elementary cylinders 
and boundaries of supports of contours are weakly compatible, which 
means that sometimes they may touch each other. To pass from the cluster 
representation of the partition function to the cluster expansion of its 
logarithm we need "good" estimates for the statistical weights w(F) and 
�9 (e). Up to now our calculations were quite general and, in fact, not 
specific to the model under consideration. The construction of appropriate 
estimations of statistical weights is of course most important and model 
dependent. Here we follow the strategy of the dominant ground-states 
theory, (4"6) but our proofs are self-contained. First we prove the weak 
version of part (i) of Theorem 2.1 to demonstrate our technique on the 
simplest example. 

T h e o r e m  2.2. There exists a constant flo > 0 such that for fl/> flo 
and 

1 1 
-flexp{-4flk+l-~}<~h<~-~exp(-4fl(k-1)-l-~} 

the model possesses a unique Z2-periodic Gibbs state generated by the 
boundary condition ~b (*). 

Here and below we use the number 100 when we need some large 
absolute constant. We do not mean that in all cases it necessarily should 
be the same constant or that it is the optimal one. This fixed choice 
produces other absolute constants and we often write them as 2. 100, 
4/100, etc., to show the origin of such constants. 

ProoL Now we specify the notions of an elementary cylinder and 
nonelementary cylinder. A cylinder ), = (~, E, I) is called a nonelementary 
cylinder, if 

diam ~ > lOO min ( E, - [ ~--fl ln(flh ) ]) (2.16) 

where [ - ]  denotes the integral part. The condition above is geometric, in 
contrast with the energetic condition used in refs. 4 and 6. It means that we 
have no fixed order in powers of e -  a as the borderline between the statisti- 
cal weights of elementary and nonelementary cylinders. This is important 
for the lemma below, which plays a key role in our proof. In it we estimate 
a,(e) and quantitatively describe the entropic repulsion phenomenon: 
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Lemma 2.5. For any elementary cylinder e define the statistical 
weights 

Wo(e)=exp{-fl [g[ L(~)}, wl(e)=~(e)-Wo(e) (2.17) 

Then for any fl>~flo and k =  -[(1/4fl)ln(flh)]  >_- 1 we have 

(i) min(~(e), Iwl(~)l)~<exp - 1-~ Igt L(e)-4/3min(E(e),k) (2.18) 

(ii) For a n y 0 < m < n  

exp { -  2 l Vl exp(-4/3m)- I Vl exp (-4/3 min(m, k ) -  l--fl~) 1 

.< Z( V"" ~ 
~- Z( V~,.. ~) 

1 
~ exp { - ~ l Vl exp( -g/3m ) + l Vl exp ( -4fl min(m, k ) - l---~ ) } 

(2.19) 

Remark 1. Statements (i) and (ii) are united in one lemma because 
we prove them simultaneously. We need (i) to compare Z(V ("'')) for 
different m and we need (ii) to estimate the statistical weight ~,(e). 

Remark 2. The statistical weight ~,(e) of the elementary cylinder 
is the renormalized one. So #(e) g: a,(e') for e =  (g,m,l) and e ' =  
(~, n, I+n-m) .  It makes the comparison of Z( V ~"'" )) and Z( V ~"'" i) more 
complicated. To handle this difficulty we split k(e) into the sum a,(e)= 
wo(~)+w1(e) such that wo(e) is invariant under vertical shifts and 
represents the main part of #(e.) while wl(e) is small. 

Remark ,3. If h satisfies the condition 

1 1 

of Theorem 2.2, then it follows from (2.19) that for m :~k 

exp(-flhm lV,) Z(V 'm''') { 1  } 
exp( -/3hk I VI) Z( V (~'")) <~ exp - ~ I VI exp( -413 min(m, k)) 

what means that ~b Ck~ is a unique dominant ground state for these values 
of h. 
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Proof. For unit e (i.e, for e with lel--- 1, Igl = 4) we have 

~,(e) = e -  4ilL(e)- flhS(e) L(e) 

Therefore, if L(e) <~ 100k, then 

Iw,(e)l ~< e -4t~Lt~)2flhL(e) <~ e-4aL~12L(e) e -4 f l ( k  - 1)-- fl/lO0 

<~ exp { - 1 - ~  lgl L(e ) - 4fl min( E(e ), k ) } 

for fl large enough. Most of the bounds which we obtain below are valid 
only for fl larger than some absolute constant. So we state it here and do 
not mention it later. If L(e) > 100k, then 

~,(E) <~ exp{ -2flL(e) } <~ exp { - 1 - ~  lgl L(e)-4fl min(E(e), k ) } 

It is clear that Z(V~" ' •  1 if IV [=1  and only unit elementary 
cylinders contribute to Z(V ~'1) with [ V [ = I  as well as to Z(V ~m'• 
with [ V[ = 2. Hence 

~_# m - -  1 

Z(v~ml)= I + e - 4 f l r - - I l h r  Ar" Z e - 4 / I r + l J h r  (2.20) 
r= I r= 1 

where the first sum corresponds to the upward spikes (unit elementary 
cylinders) and the second one corresponds to the downward spikes. The 
entropic repulsion reveals itself in the fact that the number of downward 
spikes depends on m. For V ~'~ with I VI = 1 the estimation (ii) easily 
follows from (2.20) and for V ~m'+-I with I VI = 2 it can be obtained in an 
analogous way. 

For larger volumes V the unit spikes also bring the main contribution 
to Z(V~"'I)/Z(VI""I) and to show this we apply the induction on the 
volume. Our aim is to reproduce (ii) for V ~m'" ~ supposing that (i) is proven 
for all e e V (''''). We extend the ensemble of elementary cylinders 
introducing two copies of e for every e with 

]w~(e)l<~exp{-l-~lglL(e)-4flmin(E(e),k) } 

We consider these two copies of e as not weakly compatible with each 
other and assign the statistical weight Wo(e) for the first copy and the 
statistical weight wl(e ) for the second one. To avoid confusion, we denote 
by p the elementary cylinders of the extended ensemble and we denote by 



546 Dinaburg and Mazel 

w(p) their statistical weights. This w(p) is equal to ~,(e) if p corresponds to 
a nonsplit e and it is equal to Wo(e) or w~(e) if p corresponds to the first 
copy or the second copy of the split e, respectively. Obviously we have the 
representation 

Z( V("'" ~) = ~ [I  wtp,) (2.21) 
[Pi] E V {m*'l i 

with the bound 

for the statistical weight of p. This bound allows us to write down an 
absolutely convergent cluster expansion for the logarithm of the partition 
function (2.21). 

In Z( VI"" )) = ~ r(rc) w(~) (2.22) 
l IE V Ira'') 

where the sum is extended over so-called polymers rt belonging to the 
volume V Im'" ~. Every polymer rc = (PT') is a collection of elementary cylin- 
ders pi with ,~ copies of every p~ such that for every pair p~. and pg,. there 
exists a sequence Pr = Pg, ..... po= p~~ with Pi, and pi,§ being not weakly 
compatible ( j  = 1, 2 ..... 1 -  1 ). The statistical weight of n is defined as 

w(~) = I-I w(pi)" 
i 

The M6bius factor r(n) is equal to 

G(n)  

where the sum is taken over all connected graphs G(~) on the set of Z;ag  
vertices labeled by pg with-the following property. If two vertices of G(n) 
are joined by the edge, then the corresponding elementary cylinders are not 
weakly compatible. IG(n)I is the number of edges in G(r0. (9"1~ It is well 
known ~ that 

[r(n)[ ~<exp{c Iff[} (2.24) 

where [gl = Z i  ~i IPi[ and c is a constant depending on the dimension. To 
calculate A = In Z( V c''" ~) - In Z( V ~"''~) note the following. 

For ~ such that it contains at least one elementary cylinder p with 
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we have the bound 

{ 1 /3  I~1--4/3 min(m, n, k)} (2.25) Ir(r0 w(n)l ~< exp 2 100 

because for these p 

Iw(p)l <-. exp {-1--~ lDI L(p)-4/3 min(E(p), k) } 

The number of polymers n with fixed I~1 is greater than exp(c I~1 ), hence 
the total contribution to A coming from the polymers rr satisfying the 
bound (2.25) is less than �88 exp{ -413 min(m, n, k)-/3/100}. 

The polymer n with 

w(n ) = exp { - /3 ~ ~iL(p,) lDi, } 

is, of course, invariant under vertical shifts. This allows us to cancel a large 
number of common terms in In Z( V v~'" ~) and In Z( V t"'" )). The polymers 
which are not canceled contain at least one Po with L(po) >1 min(m, n) = m. 
If the number of the elementary cylinders in n is greater than 1, then 
the total contribution to A given by these n is less than ~ I VI 
exp{ -4 f l  min(m, n, k) - fl/100 }. 

Indeed, fix some elementary cylinder Po with L(po)>>-m and consider 
an arbitrary polymer rr ~ Po. If we delete Po from n, then rt is desintegrated 
into connected components nj such that n = ( U j z j ) w p o ,  ~j,n~j2=~, 
~jc~Do~ ~ .  Denote by J j  the sum of It(n) og(n)l taken over all n which 
contain at least two elementary cylinders with at least one of them having 
the length L >/m. Then 

Jl~<lVl ~ Z Ir(n) w(x)l 
PO: ,o0 ~ O, L(po)  >~ m n: tr ~ PO 

~lVl Z w(po) Y. Ir(~)l I-[ w(~j) 
po: ~o g O, L ( p o )  >~ m (nj): n = ( U j  ~tj) ~ Po J 

~< IVI Z w(po)exp(c IDol) Y'. I-I wOrj) exp( c I~/) 
po: ~o ~ O, L (po)  >~ rn (ns): ;t = ( U j  lts) u po J 

<~ [Vl ~ w(po) exp(c IDol - /3) 
PO: /~0 -30. L(pO) >! m 

x I-I (l + Z w(n)exp(c I~[ +/3)3 
x ~ PO ~ ~ . r  

\ / 

< IVl Z 
PO: p o ~ O , L ( p o )  > -m 

x exp{-flL(po) IDol + c  IDol-/3+ IDol exp(-f l )} (2.26) 

822/74/3-4-6 
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If 4 ~< IPo[ ~< 100, then the RHS of (2.26) is less than 

IV[ exp{(2c+exp( - ]~ ) )100- /~}  ~ exp(-f l4 l )  
I=m 

~< [ V[ exp { (2c + exp( -/~)) 100 - /~  } 2 exp( - 4/~rn) 

1 

If IDol > 100, then the RHS of (2.26) does not exceed 

Igl ~ exp{-I~ol  ( 2 c + e x p ( - p ) - p L ( p o ) ) }  
[PO[ ~> IO0, L(po) >~ m 

~. ( ~ )  1 ( _ 4 / i m _  / ~ )  ~< I V] exp - 100/~ ~< ~ [ V[ exp 
I=m 

Clearly the contribution to A given by the polymers n = ( p )  with 
[~l > 4 and L(p) ~> m is less than ~ IV[ exp{ -4/~ min(m, k) -/3/100}. 

Thus an essential contribution to the difference A is given only by 
polymers zr= (p) with p being the unit spike. For these ~ obviously 
r(n) = 1, w(n)  = w(p)  = e -4~LIp). So we finally obtain 

r#--I 

z t = - I V l  Z e-4Bl+6 (2.27) 
I=m 

where I~1 ~<4�88 I VI exp{ -4/~ min(m, k)-/~/100}. This implies (ii). 
Let us stress that the difference between V (~, V (''+~, and V ~''-~ 

reveals itself in the following. If some elementary cylinder from some 
polymer n touches 0V, then that rt does not contribute to In Z(  V( " -  s(P'),  
while it contributes to In Z( V c'~) and In Z( V c''s(p'). 

Now we come to the second part of the induction step. Here our aim 
is to reproduce (i) for e = (g, E, I) supposing that (ii) is proven for all V c  g. 
We need three simple lemmas. 

Lemma 2.6. If diam V~< 100 min(m, k), then 

e -ph" Iv IZ(  V (m'")) = ~,( V (m'")) (2.28) 

Proof.  The lemma follows from the definition of the elementary 
cylinder and from Lemma 2.2. 1 

k e m m a  2.'/. For any finite volume V 

e - a n "  I Vlz( v(m, .)) ~ 3,(v(rn. . ) )  (2.29) 

Proof.  The lemma follows from the positivity of ~,(e), ~(),), from the 
definition of Z(-), and from Lemma 2.2. I 



Layering Transition in SOS Model 549 

Lemma 2.8. For any finite volume V and 0 < m < n 

Z(vIm" )__ ) ~ ePhl.-.,)IVl 
_~( V I,,. . ~) --= 

Proof. 
S( V ~'1) = ~,, exp{ -- ]~H(~b z I d<;:~)} 

~v 

= exp{/~h(n - m )  I VI} ~ exp{  - / ~ H ( d  v + n - m I ~g)) } 
r 

<~exp{#h(n-m) I VI} -~(V c"~) 

Partition functions Z( V t''' ~) and S( V TM ~) 
analogously. I 

Now we apply these lemmas and consider 
S(e) = 1. Due to Lemma 2.6 

~( g~ E.s)) = exp( - flhE I~1) Z( ~E's~), 

Hence the induction hypothesis (ii) can be applied to get the bounds 

exp { ~ lgl exp(-4flE)--flhL lg[ - lgl exp (-4fl  min( E, k ) -  l-~) } 

Z ( U  .s))  

~ e x p  {2 Igl e x p ( -  4 /~E)-  flhL Igl 

If L ~< 100k, then 

2 Igl exp(-417E) + BhL Igl + Igl exp - 4 B  min(E, k) - ~< IOO 

because diam g~< 100 rain(E, k) and flh ~< e -4~k-  t l. Hence 

Iw,(~)l ~< e x p ( - B  I~1 L) 4 lel {L e x p ( - 4 B ( k -  1)) + exp( -4BE)}  

<~ exp ( -  l ~  lgl L ) exp{ -4fl min(E, k ) } 
- 

~< exp - ~ Igl L - 4 ~  rain(E, k) 

(2.30) 

can be compared 

first e = (g, E, I) with 

Z(g t~'sl ) = exp( -tiM Igl) Z(g "s~) 

+ lgl exp (-4fl  min(E, k ) -  l-~) } 

(2.31) 
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because I~l > 4. In the opposite case, if L > 100k, then 

{ -  fl [~[ L - flhL Igl ~(e) ~< exp 

Igl exp(-4/3E)+ I'1 exp(-4flmin(E,k)-l~)} + 2  

~<exp {--fl '~' L + 1-~} 

fl I~[ L-4flk} ~< exp ~.- 

<~exp{-l-~l~lL-4flmin(E,k) } 

The case S(e)= -1  is slightly more complicated. If L >/100k, then due 
to Lemma 2.8 

Z(g(I.s)) 
~i'(e) = exp( -/~ I~1 L) 3(g(e.s)) 

~< exp{ - f l  I~'1 t + flhL [gl} 

~< exp{-/3 lel L+L} 

~< exp { -  1-i~ 'gl L -  4/~k } 

<~exp{-l-~lglL-4flmin(E,k) } 

Here we use the bound Igl flh~< Igl e -4atk- ' )~  < 1, which follows from the 
condition diam g~< loo min(E, k). 

If L <  100k and I~1 e-4al> 1/100, then 

1 e4t~ ! 

and hence 

l e 2~1 ~< diam ~ ~< lOOE 

Therefore 

and 9 
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Again by Lemma 2.8 

k(e) ~< exp{ - f l  I~1 Z + flhZ Igl} 

~<exp{-//lel L + L} 

{_, exp ~ I~1 exp 

t 
.N<exp { -  ~ fl - ) I~1 L - 41~ min(E, k ) l  

where the obvious estimation (98/100)(9/10)I~1 >i 4 for I~1 >t 6 was used. 
Finally, if L<  100k and Igl e-4~/< 1/loo, then 

5 
2 Igl e-4#e+fl hL Igl +2 I~1 e-4'~t<~ 4 Igl e-4#t+ ItY1100ke -4#(k- i)< 

loo 
Therefore by Lemma 2.8 

w,(~) ~< exp( - /~  I~1 L ) 2  lel/~ht ~< exp ( - /3  Igl Z ) 2  Igl L exp{-4/3(k-  1)} 

On the other hand 

~( glE.sl) = exp(-flhE I~1) Z( ~ ~E's~) 

by Lemma 2.6, 

,E(g ~cs~) >1 exp( - t iM I~1) Z( ~ "sJ) 

by Lemma 2.7, and 

Z(g u's~) _ exp(-t iM ]g]) Z(g ~l"s~) - - 2  
~(gte, s~) exp(-flhE Igl) Z(g tE'sl) 

{ - 2  Igl exp(-4ill) + flhL Igl >~exp 

- Ig lexp(-4f lmin( l ,k ) - l -~)  } 

by the induction hypothesis (ii). Hence, 

w,(~)/> - e x p (  - /~  Igl L) 2 Igl 

�9 f l h L - 2 e x p ( - 4 f l t ) - e x p ( - 4 f l m i n ( I , k ) - l - ~ )  ] 
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Now, if I ~  k, then 

Iwl(E)l ~< e x p ( - 8  I~1 L) 5 I~1Lexp(-4f l l )  

~exp (-1-~ lgl L-4flE){exp (-  l~ lgl L) 5L Igl } 
x exp { - f l  ( 98 L} 

100 ~ ) l ~ l  

f '  -4, t ~<exp - ~ l g l L  

<~exp{-l-~lglL-48min(E,k) } 
and, if I >  k, then 

Iwl(e)l ~< e x p ( - 8  lel L) 5 I~1 t exp{ -48(k- 1)} 

~< exp { - 1--~ I~1Z-4~k  } 

8 <.exp{-'i--~-~lglL-48min(E,k) } 

Thus condition (i) is reproduced. 
To finish the proof of Lemma 2.5, let us repeat once more the order in 

which our induction goes. Supposing (i) to be proven for all e with I~[ ~< l 
and (ii) to he proven for all V (') with IVI ~<1-1 and V ('':~) with IFI ~</, 
we first reproduce (ii) for V (') with IVI = l  and for V (' '• with IVI =I+ 1. 
Then using this fact, we reproduce (i) for e with I~1 = l +  1. I 

Lemma 2.5 contains the estimations of ~(e), hut it also allows us to 
estimate the statistical weight of contours. 

L e m m a  2.9. For any contour F =  {yext, Yi, ~i.t.j} 

,,.(F) ~< exp ( - 8  I~?~ L(7 ~xt) - 8 ~ ILl L(y,) - fl [~i.t,J I L(), int,j ) 
\ i j 

- ~ ISupp~(F)l exp{ - 4 8  min(I(7~x'), k)} 

) - ~ ~ ISupp;(F)L exp{ - 4 B  min(l(?~), k)} (2.32) 
i 
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Proof. If we substitute the obvious bound 

Z(Supp(F) (k'-)) >/Z(Supp~(F) (k''')) I-I Z(SupPi (F) (k')) 
i 

into the definition (2.14) and apply Lemma 2.5 to every term, 

e-~hl(~,) Is,po, tr)lz(Suppi( F)(l(~,)....)) 
e -  I ~h* ISupv,(r)l z (  Supp~( F)(k....)) 

then we immediately obtain Lemma 2.9. II 

Now we are ready to construct a cluster expansion for In E(V (k'')). 
Here we use a scheme proposed in ref. 8. The cluster representation (2.15) 
we rewrite now as 

~,(V(k.'))=e--Phk IVl ~, I-[ w(Ft) l-I w(~,-) (2.33) 
[ F t ; e m ] e  V [k''l I m 

where the sum is extended over compatible collections of clusters (i.e., 
contours and elementary cylinders) belonging to the volume V (k''). The 
collection [/"t; e,,] is called a compatible collection of clusters if: 

(i) Supp(Fr) n Supp(Fr,)= ~ for any Fr  and Fr,. 

(ii) Any era, and e,,,, are weakly compatible. 

(iii) For any F~ and e,, the boundary 0 Supp(F~) and e,, are weakly 
compatible. 

(iv) E(Ft)=E(~, , )=k  for any l a n d  m. 

For our purposes the result of ref. 8 can be formulated as follows. 

L e m m a  2.'10. If there exist functions a(e) and b(F) such that 

y 
~': g" ca 0 Supp( [ ' }  ~ 

and 

2 w(~') e"(C) + 

then 

~(~') e~{Cl + ~ w(F') e hlr'~ <~ b(F) 
F ' :  Supp( / " ' )  t'~ Supp(F)  ~ 

(2.34) 

w(F')eb(r')<<,a(e) (2.35) 
r ' :  0 S u p p ( F ' )  c~ E~- O 

lnS(V(k"))= ~ w(~) (2.36) 
~ e V (k'') 

where the series on the RHS of (2.36) is absolutely convergent, the statisti- 
cal weight w(~) of polymers ~ is invariant under translations of Z 2, and 
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polymers ~=  (F;;ej) are the collections of clusters with the following 
property: any two elements of r can be joined by the sequence of elements 
such that every two neighboring clusters in this sequence are not 
compatible. 

Proof. See ref. 8. | 

Corollary. If the cluster expansion (2.36) is valid for In E(V ok''l), 
then there exists the limit Gibbs state generated by the boundary condition 
~(k). 

Proof. The limit probabilities of any compatible collection of clusters 
can be directly written in terms of w(F), if(e), and w(r c~~ II 

and 

Lemma 2.11. Let 

a(~) = I~1 e -a/z~176 (2.37) 

I -4ak+ ir 3 Supp(F)l e -/~/2~176 (2.38) b( r )  = -l-6- 6 IZupp(/')l e 

Then a(e) and b(F) satisfy (2.34)-(2.35). 

Proof. The following two lemmas are important for our proof. 

L e m m a  2.1 2. For anyu,  t > 0  

exp{-uf l  191L(7)} ~ e x p ( -  �89 (2.39) 
~,: f ~ 0 . I l l  > t 

exp{-u/~ 191 t ( r )}  ~< exp ( -  ~ut/3) (2.40) 
y : ~ O ,  l f l  > t  

Proof. Due to the connectedness of 9 the number of 9 with 191 = n 
and 9 ~ 0 is less than e c". So 

E exp{-u/3 191 t(T)}--- < ~ exp(cn) ~. exp(-u[3nl)<~exp(-{utl3) 
~': ~ -~ 0 ,1 f l  > t n ~ t  I ~ 1  

If ~ 0  instead of 990 and 191=n, then there exists a point (O,q)~Z 2, 
lq[ ~< n, which belongs to 9- Hence, the number of such ~ is less than 2he c" 
and we come to the same answer. I 
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Bounds (2.39) and (2.40) are quite standard and, in fact, we already 
used them several times during the proof of Lemma 2.5. 

Lamina  2.13. Consider a treelike graph T with the vertices v 
labeled by an integer parameter n,, and with the edges g labeled by two 
integer parameters lg and ng. Denote by d(v) the number of edges incident 
to the vertex v and suppose that: 

(i) d(v)<no. 
(ii) If some edge g leads to the vertex v', then 100ng ~< no.. 

Assign to every tree T the statistical weight 

w(T)= 1--I cd~v'exp(--flnv) 1-I exp{--lgexp(--fl%)} (2.41) 
v ~ T  g E T  

where C d{~ is the binomial coefficient. Then /It, 

w(T) ~< e-  r (2.42) 
7". nr(T ) >1 t 

where r(T) denotes the root of T. 

Proof. We proceed by the induction on number of vertices m T. 
Suppose that (2.42) is proven for all T with the number of vertices ITI 
less thanq. Any tree T with [T l=q  can be decomposed into root r, 
edges g~ ..... gf which lead from the root to the vertices v~ ..... vf, and 
subtrees T l ..... T f  such that I Til < q and Ti has vi as the root. Then 

w( T) 
T: ITI = q ,  n r ~ t  

~< ~, e x p ( - f l n , ) ~  C f, 
n r =  t f =  1 

• 
It ~ 1 nt = 1 i =  1 ntl 

• y. w(r)) 
Ti: ITil < ~ q -  l , r { T i J = t ' t  

<<. ~ expi--flnr) ~ C f, 
n r = t  f = l  

• 
"= O0 Ii = 1 ni = I t 1 hi, i 

exp{-l~exp(-f ln , )}  

exp{ -Z; exp( -fin,)} exp( - �89 
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rl r 

= exp(-/3nr) E C~, 
n r = t  f =  1 

x lJ I exp{--liexp(--Bni)} 
i =  n I li = l 

~< exp( -~nr )  ~ C z 
tlr 

n r = t  f = l  

) x l--I exp { - -  I i exp( -- flrti) } exp( -- 40nifl ) 
t n 1 l i = ]  

exp( -/3n~) C;, r, ]-I exp(,Bn;) exp( - 35n,/3) 
n r = t  1 i = l  n 1 

,,, f 
~< exp(-~n~) ~ C;  1-[ exp(-30~)  nr 

n r = t  f = l  i = 1  

t, r 

~< exp(-/~n~) ~ C f exp(-30f/~) 
n t  

n r = ~  f =  1 

~< ~ exp(-fln,){1 +exp(-3Ofl )}" '<~exp(- �89 
ttr = t 

For T with I TI = 1 lemma is obvious. | 

exp(-- �89 
nvi = 100n i 

Returning to the proof of Lemma 2.11, we apply Lemma 2.12 and 
obtain the bound 

k(~') exp{a(e')} 

~ < , : ~ , ~ o e x p { - -  l ~ 0 ' g ' l L ( ~ ' ) } e x p { l g ' l e x p ( - ~ - - ~ ) }  

I~1 ~ exp - 1-~1~'1L(e') <~1~1 exp - 

Similarly, 

Z #(~') e~(~'~ ~ < IO Supp(F)l e -8/200 
,c': E' r~ O Supp(F) ~ O 

The estimation of other two terms entering in (2.34) and (2.35) is less 
trivial Here the key role is played by the following lemma. 
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Lemma 2.14. Let 

�89176 -�89 r/,(F)=exp - L(7 Cx') /~Y~ lY,I L(yi) 
i 

J 

- �88 ISupp~(F)l exp{ -4//min(I(yCx'), k)} 

- �88 ISuppi(F)l exp{-4//min(I(7,) ,  k)}) 
i 

(2.43) 

Then 

O(F) ~< e -  10o/~ (2.44) 
F:  ~ X q F )  3 0 

ProoL Consider more carefully the geometry of a given contour F =  
{yex,, 7i, 7i,~.j}. The statistical weight exp{ -�89 lYl L(y)} is concentrated on 
every cylinder of the contour F, but unfortunately the set of bases of these 
cylinders is disconnected. We apply Lemma 2.13 to show that nevertheless 
the statistical weights ~(F) are summable. For this purpose we complete 
the set of bases of cylinders to the connected structure in the following way. 
The interiors of cylinders from F are partially ordered by inclusion. Choose 
the minimal ones in the sense of this partial order and fix an arbitrary 
point from ~2 in the interior of every minimal cylinder. (Note that fl""J 
are the minimal elements, but in general not the only ones.) Draw inside 
Supp(F) the lines parallel to the first coordinate axis of ~2 passing trough 
all previously fixed points. The union of the lines and the bases of the 
cylinders forms a connected subset of ~z. The bases of cylinders of F 
cut lines into line segments. Some segments can be deleted from our 
connected structure without destroying its connectedness and we delete 
all of them. Consider two cylinders not separated by another cylinder. 
The only line segment which passes from the base of the first cylinder to 
the base of the second cylinder belongs to some Suppt.}(F) and for the 
different pairs of cylinders these segments are mutually disjoint. 

Now we spread the statistical weight ~(F) between the elements of the 
connected structure just constructed. We assign the statistical weight 
exp{-�89 L(';,)} to every cylinder of F and we assign the statistical 
weight exp{ -~  Ipl exp(-4flmin(I(~,i),k))} to every line segment 
p~Suppi(F)  of length lpl. Obviously the product of these statistical 
weights taken over all cylinders and all line segments of F remains less than 
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or equal to fv(F) [due to construction the sum of the lengths of line 
segments is less than ISupp(F)l]. 

Let y ' ~ y "  be the notation for any pair of cylinders y' and y" not 
separated by the third cylinder and with ~ 'c~" .  The observation which 
allows us to apply Lemma 2.13 is the following. If some segment p joins ~7~. 
and ~7;,, for Yv' ~ ~'v, then the statistical weight of p is 

exp{ -�88 IPl exp(-4/~ min(l(yi,), k))} 

while 

diam ~;., >/100 min(I(y;,), k) 

If some segment p joins Yr and ~Tr, with Yv, Yv, < "ei,,, and Yv c~ Yi', = f~, 
then the statistical weight of p is 

while 

exp{ -�88 Ipl exp(-4f l  min(l(yv,,), k))} 

diam Yi., >~ 100 min(I(y,.,), k) 

Up to nonessential details we fit now into the conditions of 
Lemma 2.13. The cylinders 7 �9 F correspond to vertices v of the tree with 
no= [91 and segments p �9  correspond to edges g with lg= Ipl, 
ng=min(I(yi), k). The binomial coefficient c,d,l v) counts the number of 
possibilities to choose the starting points of the segments beginning from a 
given cylinder. The cylinder ~,ext corresponds to the root of the tree and by 
our construction diam ~ext > 100k. 

This identification proves Lemma 2.14. I 

Applying Lemma 2.14, we obtain 

w(r') eb~r'l <~ ~ ~v(r') 
/ " :  Supp(/" )  ~ Supp(F) =~ O / " :  Supp(F') ~ Supp(F) ~ 0 

x6Supp( / - )  r ' :  ~'~xt(f')-OX 

~< Z e -'~176 _< "~ 100 ISupp(F)I e -4pk 
x ~ Supp(/') 

Similarly, 

Z 
/ " :  c 3 S u p p ( r ' ) ~  ~ O 

which proves Lemma 2.11. 

w(F') eb(r')<. ~ ~ fc(F') 
.,c ~ ~" F ' :  ~ e x t { F ' )  ~ x  

I~1 e-,oopk _<1 

I 
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To finish the proof of Theorem 2.2, it is necessary to establish the 
uniqueness of the limit Gibbs measure just constructed. For this purpose 
consider a large square volume V with an arbitrary boundary condition 
~w. Let us denote such a volume as V (~). For any compatible collection of 
clusters [Ft;  era] e V (~) the statistical weight of the clusters not touching OV 
is the same as for the standard boundary condition r but the statistical 
weight of the clusters touching 0V is changed depending on ~vc. If some 
cluster touches dV by q bonds such that along these bonds ~ = ~t"), n :~ k, 
then the additional factor exp(2flq I n - k l )  enters the statistical weight of 
contour Ft (or elementary cylinder e,,) with s i g n ( n - k ) =  S(~,~xt(F~)) [or 
sign(n-k)=S(em)]. So we join all clusters which touch aV into one 
object. This union of clusters we denote by 12 and we call it a boundary 
cluster. Let Supp(12) be the union of the supports of contours of I2 and let 

be the union of the bases of elementary cylinders of O. The boundary 
cluster/2 generates the boundary condition ~b (k) on the volume V\Supp(I2). 
Hence the results of ref. 15 imply that for the uniqueness in the class of 
Z 2-periodic limit Gibbs states it is sufficient to verify the following lemma. 

Lemma 2.15. For an arbitrary boundary condition ~bv. and for 
some constant 0 < ~ <  1 the probability of the event {ISupp(.Q)[ > V =} 
tends to zero as V ~ Z 2. 

ProoL The probability of any boundary cluster /2 is less than its 
statistical weight. The statistical weight of 12 is the product of the statistical 
weights of elementary cylinders e,,,(I-2) and the statistical weights of 
contours F~(I-2). The modified statistical weight of any era(12) remains less 
than or equal to 1. For any contour Ft(I2 ) its modified statistical weight is 
less than 

exp{2fl [~xt(Ft)~dVl L(7~x'(F~))} w(F~) 

Therefore it follows from the proof of Lemmas 2.13 and 2.14 that the 
probability of /2  with fixed ISupp(O)l is less than 

exp{2fl max (~bx)10VI- ~ ]Supp(I2)l exp(-4i lk)}  
x G Z  2 

which proves the lemma. | 

Let us now return to the proof of Theorem 2.1. The main difference 
between the two theorems is the following. For 

~exp(-4flk-l~)<~h<<.~exp(-4flk+l-~) (2.45, 
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Lemma 2.5 implies that the partition functions 

e--lthklVIz(vlk.')), e-t~n~k+~)lVlZ(vIk+~.')) 

are approximately equal and exceed e-Ph" ivlz(v(m.')) for m 4: k, k + 1. So 
we have two dominant ground states, ~b ck~ and ~b ~k+ l~, and one can apply 
the Pirogov-Sinai theory in the spirit of ref. 15. Here we present the sketch 
of the proof only, because the whole proof is quite standard and tedious. 

At first we construct h*(fl). For this purpose we complete the set of 
elementary cylinders by all cylinders t? = (f/, k + 1, k) and r/= (f/, k, k + 1 ). 
Obviously the representation (2.33) remains valid for ~(V ~k''~) and 
~(vIk+~"l), but we do not have a good bound on ~(q). Hence the cluster 
expansion cannot be written for In ,7(V ~k''~) and In ~,(V ~k+~''~) directly. 
Instead of this we introduce the truncated statistical weight 

a,(q) = min(~,(r/), exp{--~/? Irll L(r t )} )  (2.46) 

and the corresponding truncated partition functions ~(V ~k''~) 
_~( V Ik + ~.- ~). 

The arguments below show that for fixed/~ the equation 

and 

1 1 
"~)= lim "---=-ln~(V ~k+l"'~) lim - -  In ~( V Ik" 

v -  z~ I VI v -  z '  I VI 
(2.47) 

has a unique solution in segment (2.45). It follows from Theorem 2.2 that 
for h = (1/fl) exp( -4 i lk  + fl/lO0) 

2( vIk." ~) = _=( vIk." ~), ~(VIk + ~," I) < ~(VIk + t.' I) 

and hence 

a= lim l_~{ln2(VIk. . i )_ ln~(V~k+~, . i )}> 0 
v--  z:  I VI 

(2.48) 

Analogously at the point h = (1 / f l )  e x p ( -  4ilk- fl/lO0) 

ff,(VIk + ~,' I) = ~(V~k + ~." ~), ~,( vIk," J) < ..7,( vIk." I) 

and a < 0. According to the cluster expansion of type (2.36) one can write 
down the representation 

w(~ k§ 
a=/3h+ y'. w(~) Y" I~k§ (2.49) 
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where if,  i f+  ~ are polymers for the corresponding truncated models and 
(*, (~+~ are their interiors. It can be checked that the derivative a'~h is 
positive for h from segment (2.45) because the derivative of the first term 
in (2.49) is equal to 1, while the absolute values of derivatives of the last 
two sums are much less than 1. 

By induction on the volume it can be easily shown that 

~( V~ + ~," I) =_~(V~* + ~." I), ~(V~,'~) = ~(Vt~.'~) 

for h being the solution of (2.47). Hence this solution of Eq. (2.47) defines 
the coexistence curve h~(fl) of phases ~b {k~ and ~b tk§ on the phase diagram. 
The proof of the uniqueness of limit Gibbs states generated by the 
boundary conditions ~b ~k~ and ~b t~+ ~1 in the class of Z~-periodic Gibbs states 
is analogous to the proof of Lemma 2.15. 

The case a > 0 is slightly more complicated. Again by induction on the 
volume one can verify that 

for r/with 

d i a m ~  f l  (2.50) 
6a 

Using this fact, it is possible to prove that 

for any t/=(F/, k , k +  1). Indeed, let 7 ,  be the minimal cylinder with 
#(q,)4:ff,(q,).  Denote by {q/}ext a compatible collection of external 
cylinders ~i = (Oi ,  k + 1, k) ~ f/~ + L + ~ with diam ~ > fl/6a. The partition 
function ~,(Or can be represented as the sum 

2(~*k+L*~) = ~, ~(Utk+l '+ ' ) l - lexp{-- f l  10,1 t(rt,)} ~(rTl k'-)) (2.51) 

where U=f/ , \ (U~f/i)  and ~(-) denotes the partition function over 
compatible collections of cylinders different from r / = ( q , k +  1, k) with 
diam ~ > fl/6a. By construction 

,)  = - ,), * , )  . * ,  ) 

~(Ur + ~,+~)~< ~,(UIk + ~.+1) 
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Applying  Lemmas  2.13 and 2.14, one can easily carry  out  the summat ion  
over {r/i} ex' and prove that  

{ hi}cat 

< ~ exp{ - a  IUI + e  -t~ 14,1} I-I exp{ - ( f l - e  -a )  14,1 t0/,-)} 
{r/i} cxt i 

< exp{ e- '~ 14.1} 

which contradic ts  the assumpt ion  ~ ( r / . ) : / : k ( r / , ) .  If # ( r / )=~, ( r / )  for any 
r /=  (4, k, k + 1 ), then 

e(VIk.-I)  = ~( VIk,. I) 

for any finite volume V. This proves the existence of the limit Gibbs  state 
generated by the bounda ry  condi t ion  ~b Ik~. The p roof  of the uniqueness of 
this state in the class of ZZ-periodic Gibbs  states is s imilar  to the p roof  of 
Lemma 2.15. 

The case a < 0 can be considered in an ana logous  way. II 
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